Introduction

Modula-2 grew out of a practical need for a general, efficiently implementable systems programming language for minicomputers. Its ancestors are Pascal and Modula. From the latter it has inherited the name, the important module concept, and a systematic, modem syntax, from Pascal most of the rest. This includes in particular the data structures, i.e. arrays, records, variant records, sets, and pointers. Structured statements include the familiar if, case, repeat, while, for, and with statements. Their syntax is such that every structure ends with an explicit termination symbol.

The language is essentially machine-independent, with the exception of limitations due to wordsize. This appears to be in contradiction to the notion of a system-programming language, in which it must be possible to express all operations inherent in the underlying computer. The dilemma is resolved with the aid of the module concept. Machine-dependent items can be introduced in specific modules, and their use can thereby effectively be confined and isolated. In particular, the language provides the possibility to relax rules about data type compatibility in these cases. In a capable system-programming language it is possible to express inpuut/output conversion procedures, file handling routines, storage allocators, process schedulers etc. Such facilities must therefore not be included as elements of the language itself, but appear as (so-called low-level) modules which are components of most programs written. Such a collection of standard modules is therefore an essential part of a Modula-2 implementation.

The concept of processes and their synchronization with signals as included in Modula is replaced by the lower-level notion of coroutines in Modula-2. It is, however, possible to formulate a (standard) module that implements such processes and signals. The advantage of not including them in the language itself is that the programmer may select a process scheduling algorithm tailored to his particular needs by programming that module on his own. Such a scheduler can even be entirely omitted in simple (but frequent) cases, e.g. when concurrent processes occur as device drivers only.

A modern system programming language should in particular also facilitate the construction of large programs, possibly designed by several people. The modules written by individuals should have well-specified interfaces that can be declared independently of their actual implementations. Modula-2 supports this idea by providing separatet definition and implementation modules. The former define all objects exported from the corresponding implementation module; in some cases, such as procedures and types, the definition module specifies only those parts that are relevant to the interface, i.e. to the user or client of the module.

Syntax
A language is an infinite set of sentences, namely the sentences well formed according to its syntax. In Modula-2, these sentences are called compilation units. Each unit is a finite sequence of symbols from a finite vocabulary. The vocabulary of Modula-2 consists of identifiers, numbers, strings, operators, and delimiters. They are called lexical symbols and are composed of sequences of characters. (Note the distinction between symbols and characters.)

To describe the syntax, an extended Backus Naur Formalism called EBNF is used. Angular brackets [] denote optionality of the enclosed sentential form, and curly brackets { } denote its repetition (possibly 0 times). Syntactic entities (non terminal symbols) are denoted by English words expressing their intuitive meaning. Symbols of the language vocabulary (terminal symbols) are strings enclosed in quote marks or words written in capital letters, so called reserved words.

Vocabulary and representation
The representation of symbols in terms of characters depends on the underlying character set. The ASCII set is used in this reference text, and the following lexical rules must be observed. Blanks must not occur within symbols (except in strings). Blanks and line breaks are ignored unless they are essential to separate two consecutive symbols.

Identifiers

Identifiers are sequences of letters and digits. The first character must be a letter.

ident = letter {letter | digit}

Examples: x scan Modula ETH GetSymbol firstLetter

Numbers

Numbers are (unsigned) integers or real numbers. Integers are sequences of digits. If the number is followed by the letter B, it is taken as an octal number; if it is followed by the letter H, it is taken as a hexadecimal number; if it is followed by the letter C, it denotes the character with the given (octal) ordinal number (and is of type CHAR). An integer i in the range 0 <= i <= MaxInt can be considered as either of type INTEGER or CARDINAL; if it is in the range MaxInt < i <= MaxCard, it is of type CARDINAL. For 16-bit computers: MaxInt = 32767, MaxCard = 65535.

A real number always contains a decimal point. Optionally it may also contain a decimal scale factor. The letter E is pronounced as "ten to the power of". A real number is of type REAL.

 number = integer | real.

 integer = digit {digit} | octalDigit {octalDigit} ("B" | "C") | digit {hexDigit} "H".

 real = digit {digit} "." {digit} [ScaleFactor].

 ScaleFactor = "E" ["+"|"-"] digit {digit}.

 hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".

 digit = octalDigit | "8" | "9". |

 octalDigit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7".

Examples: 1980 3764B 7BCH 33C 12.3 45.67E 8

Strings

Strings are sequences of characters enclosed in quote marks. Both double quotes and single quotes (apostrophes) may be used as quote marks. However, the opening and closing marks must be the same character, and this character cannot occur within the string. A string must not extend over the end of a line.

string = '"' {character} '"' | "'" {character} "'"

A string consisting of n characters is of type ARRAY [0..n-1] OF CHAR

Examples: "MODULA" "Don't worry!" 'codeword"Barbarossa"'

Operators and delimiters

Operators and delimiters are the special characters, character pairs, or reserved words listed below. These reserved words consist exclusively of capital letters and must not be used in the role of identifiers. The symbols # and <> are synonyms, and so are &, AND, and ~, NOT.

 + = AND FOR QUALIFIED

 - # ARRAY FORWARD RECORD

 * < BEGIN FROM REPEAT

 / > BY IF REM

 := <> CASE IMPLEMENTATION RETRY

 & <= CONST IMPORT RETURN

 . >= DEFINITION IN SET

 , .. DIV LOOP THEN

 ; : DO MOD TO

 () ELSE MODULE TYPE

 [] ELSIF NOT UNTIL

 { } END OF VAR

 ^ | EXCEPT OR WHILE

 ~ EXIT PACKEDSET WITH

 EXPORT POINTER

 FINALLY PROCEDURE

Additional reserved words defined by the ISO generics language extension

 GENERIC

Additional reserved words defined by the ISO object oriented language extension

 AS INHERIT TRACED

 ABSTRACT OVERRIDE UNSAFEGUARDED

 CLASS READONLY

 GUARD REVEAL

Comments

Comments may be inserted between any two symbols in a program. They are arbitrary character sequences opened by the bracket (* and closed by *). Comments may be nested, and they do not affect the meaning of a program.

Declarations and scope rules
Every identifier occurring in a program must be introduced by a declaration, unless it is a standard identifier (see below). Declarations also serve to specify certain permanent properties of an object, such as whether it is a constant, a type, a variable, a procedure, or a module.

The identifier is then used to refer to the associated object. This is possible in those parts of a program only which are within the so called scope of the declaration. In general, the scope extends over the entire block (procedure or module declaration) to which the declaration belongs and to which the object is local. The scope rule is augmented by the following cases:

1. If an identifier x defined by a declaration D1 is used in another declaration (not statement) D2, then D1 must textually precede D2.

2. A type T1 can be used in a declaration of a pointer type T which textually precedes the declaration of T1, if both T and T1 are declared in the same block. This is a relaxation of rule 1.

3. If an identifier defined in a module M1 is exported, the scope expands over the block which contains M1. If M1 is a compilation unit, it extends to all those units which import M1.

4. Field identifiers of a record declaration are valid only in field designators and in with statements referring to a variable of that record type.

An identifier may be qualified. In this case it is prefixed by another identifier which designates the module in which the qualified identifier is defined. The prefix and the identifier are separated by a period.

qualident = ident {"." Ident}.

Standard identifiers

Standard identifiers are considered to be predeclared, and they are valid in all parts of a program. For this reason they are called pervasive.

 ABS BITSET BOOLEAN CARDINAL

 CAP CHR CHAR COMPLEX

 CMPLX DEC DISPOSE EXCL

 FALSE FLOAT HALT HIGH

 IM INC INCL INT

 INTERRUPTIBLE INTEGER LENGTH LFLOAT

 LONGCOMPLEX LONGREAL MAX MIN

 NEW NIL ODD ORD

 PROC PROTECTION RE REAL

 SIZE TRUE TRUNC UNINTERRUPTIBLE

 VAL

The pervasive identifiers COMPLEX, CMPLX, IM, INT, INTERRUPTIBLE, LENGTH, LFLOAT, LONGCOMPLEX, LONGREAL, PROTECTION, RE and UNINTERRUPTIBLE were added for ISO Modula-2.

Constant declarations
Constants are objects that have a specific value assigned at compile time. Constants cannot change during the execution of the program.

The format of the constant declaration is:

 CONST {constdec}

where constdec is:

 identifier = value;

The identifier is the name of the constant you are defining.

Simple constants

For simple types, value is an expression giving the value of the constant. The expression must be made up of constants only, so that the compiler can evaluate it at compile time.

The following are examples of simple constants:

 CONST

 One = 1;

 Pi = 3.14159;

 PiOver2 = Pi / 2.0;

 Debug = TRUE;

 Message = "That's not right!";

Structured constants

You can also create constants of array and record types. The value for these structured types consists of a constant constructor.

If a component is a structured type, the value for that component must also be a constant constructor.

When creating structured constant types, you must specify the type of the constant.

Array constant constructors take the following form:

 TypeName{element {, element}}

where element is

 constantValue [BY repeatValue]

Record constant constructors take the following form.

 TypeName{element {, element}}

where element is

 constantValue

where constantValue is a valid constant expression for the field type.

The following are examples of structured constants:

 TYPE

 rectype =

 RECORD

 A , B : INTEGER;

 C : CHAR

 END;

 arraytype1 = ARRAY [1..2], [1..2] OF INTEGER;

 arraytype2 = ARRAY [1..2] OF rectype;

 arraytype3 = ARRAY [0..255] OF CARDINAL;

 CONST

 rtc = rectype{1, 2, '*'};

 atc1 = arraytype1{{1, 12},{1, 23}};

 atc2 = arraytype2{{1, 2, '*'}, rectype{1, 2, '*'}};

 atc3 = arraytype3{1, 2 BY 254, 2};

Note that when an element of a structured type is itself a structure it is optional to prefix the {with the type name of the structure if it has a type name. The type name is not necessary since the type of the constant to follow is known from the declaration of the type. This also allows you to have anonymous types as elements and still be able to create a constant.

Variant Record constants

If you are creating a constant of a record type that has variants, you must specify a value for the tag field of each variant in the record. This is true even if the tag field is not named.

The fields following the tag field must comply with the types of the fields for the variant selected by the value of the tag field.

The following are examples of variant record constants:

 TYPE varrec =

 RECORD

 F1 : INTEGER;

 CASE : BOOLEAN OF

 TRUE : X : REAL; |

 FALSE: Y : LONGINT;

 END;

 END;

 CONST

 varrecf = varrec{1, FALSE, 12};

 varrect = varrec{1, TRUE, 1.5};

Set constants

Set constants have the following syntax:

 SetType {element {,element}}

element is:

 expression [..expression]

where expression is a compile time constant expression assignable to the base type of the set.

If the .. form is used, all elements within the range of the two expressions are included in the set.

Examples:

 BITSET{1, 3..5}

 ColorSet{Red, Blue}

 ColorSet{Red..Blue}

Type declarations
Type declarations create new named data types. The format for type declarations is:

 TYPE {Name = TypeSpecification;}

Name is the name of the new type.

TypeSpecification can be:

· a type name

· a basic type

· an enumeration type

· a subrange

· a pointer type

· a set type

· an array type

· a record type

· a procedure type

If the TypeSpecification is a type name, the new type is equivalent to the named type. Otherwise, a new type is created.

Examples:

 TYPE

 Integer = INTEGER;

 SmallInt = [-10..10];

 Color = (Red, Green, Blue);

 CharPointer = POINTER TO CHAR;

 ColorSet = SET OF COLOR;

 String = ARRAY [0..255] OF CHAR;

 Complex = RECORD A,B : REAL; END;

 RealFunc = PROCEDURE(REAL) : REAL;

Basic types- ISO Standard Defined Types

The following table lists the pre-declared types in the Modula-2 language. The identifiers for these types are automatically defined in every Modula-2 module.

	Type
	Storage size
	Range

	INTEGER
	16-bit compiler: 2 bytes
32-bit compiler: 4 bytes
	 -32768 to 32767
-2,147,483,648 to 2,147,483,647

	CARDINAL
	16-bit compiler: 2 bytes
32-bit compiler: 4 bytes
	0 to 65535
0 to 4,294,967,295

	REAL
	4 bytes
	Real numbers with an approximate range of 8.43E-37 to 3.37E+38 and an accuracy of about 7 decimal digits

	LONGREAL
	8 bytes
	Real numbers with an approximate range of 4.19E-307 to 1.67E+308 and an accuracy of about 16 decimal digits

	COMPLEX
	8 bytes
	Complex numbers where the real and imaginary Components are of type REAL

	LONGCOMPLEX
	16 bytes
	Complex numbers where the real and imaginary Components are of type LONGREAL

	BOOLEAN
	1 byte
	An enumeration type with the values FALSE and TRUE

	CHAR
	ANSI (8-bit): 1 byte
Unicode (16-bit): 2 bytes
	A character in the ANSI (8-bit) or Unicode (16-bit) character set.

	BITSET
	2 bytes
	A PACKEDSET type with an ordinal range of CARDINAL[0..15]

Enumerations

An enumeration is a list of identifiers that denote the values which constitute a data type. These identifiers are used as constants in the program. They, and no other values, belong to this type. The values are ordered, and the ordering relation is defined by their sequence in the enumeration. The ordinal number of the first value is 0.

 enumeration = "(" IdentList ")".

 IdentList = ident {" ," ident}.

Examples of enumerations:

 (red, green, blue)

 (club, diamond, heart, spade)

 (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday)

Subrange types

You can create subranges of any signed integer, unsigned integer, character and enumeration type. The subrange type restricts the values allowed for the type, but leaves the same operations applicable.

To specify a subrange type, use the following format:

[typename][expression..expression]

The two expressions must be constructed solely of constants. The first expression specifies the lowest value of the subrange and the second specifies the highest value of the subrange.

If you do not specify typename, the two expressions must be compatible and the subrange must be a subrange of the type of the expressions.

If the expressions are both integer expressions, use the following rules to determine the type from which the subrange is derived:

· If the lower bound is greater than or equal to zero:

· if the upper bound is less than or equal to the maximum of type CARDINAL, the subrange will be of type CARDINAL.

· otherwise, the type is LONGINT

· If the lower bound is less than zero:

· if both bounds are within the range of type INTEGER, the type is INTEGER.

· otherwise, the type is LONGINT.

You can specify typename to override the above conventions or for documentary purposes. If typename is specified, both expressions must be compatible with it.

Examples:

TYPE

SmallInt = [-128..128];

SmallCard = [0..255];

UpperCaseLetters = CHAR['A'..'Z']

Pointer types

Pointer types have values that are memory addresses. A pointer type is bound to a specific object type, so the value of the pointer is the address of an object of a specific type.

To specify pointer types, use:

POINTER TO TypeName

Example:

POINTER TO CHAR

The constant NIL is compatible with all pointer types, and designates a pointer that does not point to any object. NIL can be assigned to any pointer type, and any pointer type can be compared to NIL.

Allocating pointers

Generally, pointers are set by allocating a block of memory for the object that they point to. The NEW standard procedure and the ALLOCATE procedure in the ISO module Storage performs this function. You can deallocate the memory with the DISPOSE standard procedure, or the DEALLOCATE procedure. The ALLOCATE and DEALLOCATE procedures are exported from the ISO module Storage.

Dereferencing pointers

Dereferencing is used to refer to the object that a pointer variable points to. You dereference a pointer as follows:

variable^

Note: Be sure to assign a value to a pointer before dereferencing it. If an uninitialized pointer is dereferenced, it might refer to any location in memory which will probably result in a runtime error.

Set types

Set types have values that specify a subset of a set of objects. The objects can be:

· positive integers

· characters

· an enumeration type

· a subrange of any of the above

To specify a set type, use:

SET OF TypeSpecification;

PACKEDSET OF TypeSpecification;

TypeSpecification is called the base type of the set.

You can think of a set type as having a Boolean membership flag for each value in the base type.

Modula-2 supports two different types of sets, SET and PACKEDSET. The only difference between the two is how a compiler is allowed to implement a set type. PACKEDSET types are implemented such that each ordinal value in the set maps directly to individual bits in the memory storage for the set type. The first ordinal value occupies the first bit and this continues until the last bit. A compiler is allowed to implement the SET type in any way it chooses.

Note: Stony Brook Modula-2 implements the SET type the same as the PACKEDSET type.

Example:

SET OF CHAR

SET OF [0..65535]

SET OF ['A'..'Z']

SET OF (Red, Green, Blue)

An object with the type of the last example above can have any of the following values:

{}
{Red}
{Green}
{Red, Green}
{Blue}
{Red, Blue}
{Green, Blue}
{Red, Green, Blue}

Array types

An array type is a sequence of components of some other type. The components of an array are distinguished by an index, which also has a specific type. You can define arrays of arrays to represent two or greater than two-dimensional structures.

To define arrays, use:

ARRAY indextype {,indextype} OF elementtype

Each indextype must be BOOLEAN, CHAR, an enumeration type, or a subrange type. A component of the array is defined for each combination of index values.

The elementtype can be any type, including array types. An array type with multiple indextypes is simply shorthand for an array type with an array type as the element type.

Examples:

ARRAY [1..10] OF REAL;
ARRAY INTEGER[1..10] OF REAL;
ARRAY CHAR OF BOOLEAN;
ARRAY [1..10], [1..10] OF REAL;

Subscripting

You refer to a component of an array by subscripting an array variable. Subscripting is specified as follows:

variable[expression{,expression}]

The expressions must be assignable to the index types with which the array variable was declared. The values of the expressions must lie within the range specified by the index type.

If an index expression is outside the range of the index type, and the module was compiled with index checking turned on, the program generates a runtime error.

Record types

Record types are structures that contain named components. The named components can be of different types. The components of a record are called fields.

Parts of a record can have multiple definitions to allow the information stored in a record to vary according to different needs. These parts are called variant sections.

The identifier following CASE in variant sections is called the tag field of the variant section. Its value indicates which variant is present in the record.

To specify record types, use:

RECORD
 FieldListSequence
END

FieldListSequence is:

FieldList {;FieldList}

FieldList is either of the following:

identifier {,identifier}: TypeSpecification

or

CASE [identifier] : TypeName OF
 variant {|variant}
[ELSE FieldListSequence]
END

Variant is:

[CaseRange {,CaseRange}: FieldListSequence]

CaseRange is:

expression [..expression] {, expression [..expression]}

Examples:

RECORD
 X, Y : REAL;
END

This record has two fields, X and Y, both of type REAL. This record might be used to represent a point in a plane.

RECORD
 NEXT : NodePointer;
 CASE NT : NodeType OF
 Operator:
 op : OperatorType;
 left, right : NodePointer;
 |
 Operand:
 value : REAL;
 END;
END

This record has one field, NEXT, followed by a variant section. The variant section has two variants, one for the NodeType Operator and one for Operand.

A variant in a RECORD must handle all possible values of the tag field type. Thus if the CASE selector arms do not handle all possible values you must have an ELSE section in the CASE. The ELSE section can be empty. In this way you are informing the compiler you understand that all values are not handled and this is the necessary behavior.

Field selection

You can select a field of a record type variable as follows:

variable.field

Where variable is a record variable and field is the name of the field.

If the field is a part of a variant section with a tag field specified, it is an error to refer to any field in a variant other than the one specified by the tag field.

If you refer to a field in an incorrect variant, and the module was compiled with variant checking on, the program generates a runtime error.

Copying of variant records

The compiler allocates variables of variant record types the maximum amount of memory needed by any variant. These variables are, therefore, capable of holding any variant, and copying one record to another will work correctly.

If you use the NEW standard procedure to allocate a variant record and specify the values of the tag fields, the compiler allocates only enough memory for the specific variants you selected.

You cannot do assignments of the entire record to records allocated in that way, because the amount of space allocated might not be large enough to hold the record you are assigning.

If you intend to do an assignment of the whole record, use NEW without specifying any tags. In this case, the compiler allocates space for the largest variant.

Example:

 TYPE VARREC =

 RECORD

 CASE Tag : INTEGER OF

 1: R : REAL; |

 2: L : LONGREAL;

 ELSE

 END;

 END;

 VAR

 A : VARREC;

 B : POINTER TO VARREC;

 BEGIN

 NEW(B);

 B^ := A; (* Correct *)

 NEW(B, 1);

 B^ := A; (* Incorrect *)

 END;

Procedure types

Procedure type objects have the addresses of procedures as values. Specify procedure types as follows:

PROCEDURE [(ParameterList) [: ReturnType]]

ParameterList is:

[Parameter {,Parameter}]

Parameter is:

[VAR] [ARRAY OF {ARRAY OF}] TypeName

For detailed information on the VAR, INOUT, OUT, FAR, NEAR, VALUE and NOHIGH identifiers see the Procedures topic of this file.

ReturnType is the type of value returned by procedures. It must be a type name and may be qualified by a module name.

Example:

TYPE Func = PROCEDURE(REAL) : REAL;

Variables of procedure types can be assigned the value of a procedure that has the same types of parameters and return value, and the same attributes.

Only procedures that are not contained in other procedures can be assigned as the values of procedure variables. Standard procedures cannot be assigned as the values of procedure variables.

Using procedure types

Procedure types are often used as parameters to other procedures. This is useful when the procedure specifies an algorithm that involves calling another procedure or function, and the called procedure or function varies from one call to the next.

A good example of the use of procedure types is a numeric integration procedure. The procedure implements the algorithm of numeric integration but the function being integrated is passed in as a parameter:

PROCEDURE Integrate(X1, X2 : REAL;
 NumPoints : CARDINAL;
 Function : Func) : REAL;
VAR
 Sum : REAL;
 i : CARDINAL;
 X, DX : REAL;
BEGIN
 DX := (X2-X1)/FLOAT(NumPoints-1);
 X := X1;
 Sum := 0.0;
 FOR i := 1 TO NumPoints-1 DO
 Sum := Sum + Function(X) * DX;
 X := X + DX;
 END;
 RETURN Sum;
END Integrate;

Variable declarations
Variables are objects that have values that change during the execution of a program. Variables are created by a variable declaration. The format of the variable declaration is:

VAR {identifier {,identifier}: TypeSpecification;}

Each of the identifiers to the left of the colon is declared as a variable of the type that is specified to the right of the colon. TypeSpecification can be either a type name or a new type.

The following are examples of variable declarations:

VAR
 I, J : INTEGER;
 MAT : ARRAY [1..3],[1..3] OF REAL;
 BackGround, ForeGround : Color;
 PossibleColors : SET OF Color;
 RecordPointer : POINTER TO RecType;

Absolute variables

You can give the absolute address of a variable as follows:

VAR identifier [MAKEADR(constant)] : TypeSpecifiation;
VAR identifier [MAKEADR(constant, constant)] : TypeSpecifiation;

MAKEADR is imported from the ISO module SYSTEM. The two different forms of MAKEADR are due to the segmented nature of the 80x86 processor. If MAKEADR is passed a single constant the value represents the offset of the address relative to the data segment. When two constants are passed they are the segment and the offset, respectively, of the absolute address.

When you give an absolute address, the compiler does not allocate space for the variable, but refers to the address you specify.

Example:

VAR screen [MAKEADR(0B800H,0)] : ScreenType;

The variable screen refers to the screen memory of the color display adaptor in an IBM PC.

Expressions
Expressions are constructs used to create new objects by operating on existing objects. The simplest expression names an existing object (a variable or a constant). Operators are used to perform computations on objects.

Operators specify that an operation is performed on one or two objects. The objects are called operands. Operands can be variables, constants, results of another operator, or results of function calls.

Expressions - Operands
Operands can be any of the following:

· Integer constants

· Real constants

· Complex constants

· String constants

· Set constructors

· Variable designators

· Procedure designators

· Function calls

· Type casts

Each operand has a type associated with it that determines what operators can apply to it.

For Integer constants, Real constants, Complex constants see Type declarations: basic types.

Character and string constants

String constants are specified by enclosing a string of characters in either single or double quotes. A string constant with N characters has the type:

ARRAY [0..N-1] OF CHAR

String constants with exactly one character are also compatible with the CHAR type.

String constants are compatible with ARRAYs that have an element type of CHAR.

Note: for ease of interfacing with operating systems and other languages, string constants are always followed in memory by a byte containing the NUL character (0 decimal).

A string constant with no characters (represented by two adjacent quotes, "") is allocated one byte and has the value NUL. If this string is passed to a procedure expecting an ARRAY OF CHAR, the upper bound will be zero, which indicates a string with one character. In this case, the one character is NUL.

You can use set, array and record constants in expressions using the same syntax for the value as used in constant declarations.

SET, ARRAY and RECORD value constructors

This creates a constant value from expressions that cannot be computed at compile time. A value constructor can only be used in expressions that are part of a statement.

SET, ARRAY and RECORD value constructors have the same syntax as SET, ARRAY and RECORD constants, however you can use non compile time values for any of the elements in the constructor.

BITSET{x..y}
Matrix{{InitialValue BY 10}BY 10}

If you use the BY keyword in an ARRAY value constructor, the BY repeat expression must still be a compile time constant.

Variable designators

A variable designator refers to the current value of a variable. The syntax of a variable designator is:

[modulename.]variablename{qualifier}

If the modulename is specified, the variablename exported from that module is used. Otherwise, the variablename is interpreted in the current scope.

Qualifier is:

[field | subscript | dereference | subarray | coercion]

Field qualifier

The field qualifier is specified by:

designator.identifier

The field qualifier can be applied to a variable designator that refers to a record type. The new designator refers to the field of the record named by the identifier.

Subscript qualifier

The subscript qualifier is specified by:

designator[expression{,expression}]

The subscript qualifier can be applied to a variable designator that is an array type. The resulting designator refers to the component of the array selected by the index values specified by the expressions.

An expression of the form:

A[e1, e2]

is equivalent to:

A[e1][e2]

Dereference qualifier

Dereference qualifierThe dereference qualifier is specified by:

designator^

The dereference qualifier can be applied to any designator that refers to a pointer type. The resulting designator refers to the object pointed to by the pointer variable.

Procedure designators

A procedure designator is simply the name of the procedure. A procedure designator refers to the address of the procedure and can only be passed as a parameter or assigned to a procedure variable.

Function calls

A procedure designator followed by parentheses is a function call. The procedure must be a function procedure; that is, its declaration must include a return type.

A function call is specified by:

FunctionName([expression{,expression}])

The list of expressions are the actual parameters of the function. The actual parameters are matched in order with the formal parameters.

The requirements for the actual parameters depend on how the formal parameter was declared:

· For value parameters, the expression must result in a type assignable to the type of the formal parameter.

· For VAR parameters, the expression must be a variable designator having the same type as the formal parameter.

· For open array parameters, the actual parameter must be an array variable having the same element type as the formal parameter, or an open array parameter of the same type.

· For procedure type parameters, the actual parameter can be either a variable of a compatible procedure type, or the name of a procedure compatible with the procedure type.

Formal parameter types are discussed in depth in the Procedures topic in this document.

The value of a function call is the value returned on the return statement in the function procedure.

Type cast

You can force an expression to be interpreted as a type other than its usual type by using a type cast.

A type cast takes the following form:

CAST(TypeName, expression)

The expression is evaluated, then forced to be interpreted as the type specified by TypeName. No conversion of data is done by type transfers. The raw data is interpreted as the new type. The CAST function is imported from the SYSTEM module.

This means that type transfers are dependent on the data representation used by an implementation, and are therefore not transportable.

For this reason, type conversion procedures are preferred when applicable. See the Standard Procedures chapter of this manual for information about type conversion procedures.

Type transfers from a shorter to a longer type are allowed, however a warning is generated because the excess bits are undefined.

Example:

VAR
 X : BITSET;
BEGIN
 X := BITSET{1, 2, 4};
 WriteCard(CAST(CARDINAL16, X), 0);

The value written is 22, because the BITSET has bits 1, 2, and 4 set. When interpreted as a CARDINAL this makes the number 22.

Expressions - Operators
Integer operators

The following binary operators apply to all signed and unsigned integer types:

	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Integer division

	REM
	Integer remainder

	DIV
	Division with modulus

	MOD
	Integer modulus operation

Both operands of a binary operator must be compatible; that is, you cannot add an INTEGER to a CARDINAL. You can use type conversion procedures or type transfers to combine operands of different types.

Unary + can be used on all the types. Unary - can be used on signed integer types.

The result type of all the integer operators is the same as the type of the operands. If the result of the operator is outside the allowable range of the type, overflow occurs.

Stony Brook M2 users: The result of an overflow depends on the qualifiers used when compiling. If overflow checking is on, a runtime error is signaled, otherwise, the low-order bits of the result are produced without any error.

Real operators

The following binary operators apply to operands of type REAL and LONGREAL:

	+
	Addition

	-
	Subtraction

	*
	Multiplication

	/
	Division

Both operands of an operator must be the same type.

Unary + and unary - also apply to both real types.

The result type of all the real operators is the same as the operands.

Boolean operators

The following operators apply to Boolean types. This includes the extended syntax boolean types, however the result of those expressions still return type BOOLEAN.

	(NOT, ~)
	Boolean negation

	(AND, &)
	Boolean conjunction

	OR
	Boolean disjunction

The operators are defined as follows:

	NOT A
	is TRUE if A is FALSE, FALSE if A is TRUE.

	A AND B
	is TRUE if and only if both A and B are TRUE.

	A OR B
	is TRUE if and only if either A is TRUE or B is TRUE.

All the boolean operators produce results of type BOOLEAN.

Set operators

The following operators apply to set types. Both operands must be the same set type:

	+
	set union

	-
	set difference

	*
	set intersection

	/
	set symmetric difference

The operations are defined as follows:

	A + B
	the set of elements in either A or B

	A - B
	is the set of elements that are in A and are not in B

	A * B
	is the set of elements in both A and B

	A / B
	is the set of elements that are in either A or B but not in both A and B

Set union is equivalent to a bit-by-bit OR operation.

Set intersection is equivalent to a bit-by-bit AND operation.

Set symmetric difference is equivalent to a bit-by-bit XOR operation.

Relational operators

These operators are the arithmetic comparison operators and the set inclusion and membership operators.

	=
	equal

	(<>, #)
	not equal

	<
	less

	>
	greater

	<=
	less or equal, set inclusion

	>=
	greater or equal, set inclusion

	IN
	set membership

The six arithmetic relations apply to all signed and unsigned integer types, REAL, LONGREAL, BOOLEAN, CHAR, and enumeration types.

· The equal and not equal operators also apply to SET, POINTER, COMPLEX, LONGCOMPLEX and procedure types.

· A <= B, where A and B are compatible sets indicates that B contains all of the elements of A, that is, A is a subset of B.

· A >= B, where A and B are compatible sets indicates that A contains all the elements of B, that is, B is a subset of A.

· A IN B, where B is a set type and A is a value in the base type of the set, indicates that element A is in the set B.

· All the relational operators produce results of type BOOLEAN.

Order of Evaluation

A precedence is associated with each operator that determines the order in which operators are applied in an expression. Operators of higher precedence are applied before operators of lower precedence. Operators of the same precedence are evaluated in left-to-right order.

You can use parentheses in an expression to override the order of evaluation. A parenthesized expression is always completely evaluated before being used as an operand.

There are four levels of precedence for Modula-2 operators. They are, from highest to lowest:

Level 4: NOT ~

Level 3: * / REM DIV MOD AND &

Level 2: + - OR

Level 1: < <= = >= > <> # IN

Examples:

2 + 3 * 5

equals 17, not 25, because the multiplication operator (*) has higher precedence than the addition.

(2 + 3) * 5

equals 25 because the parentheses force the addition to be performed before the multiplication.

Statements
Statements denote actions. There are elementary and structured statements. Elementary statements are not composed of any parts that are themselves statements. They are the assignment, the procedure call, and the return and exit statements. Structured statements are composed of parts that are themselves statements. These are used to express sequencing, and conditional, selective, and repetitive execution.

 statement = [assignment | ProcedureCall |

 IfStatement | CaseStatement | WhileStatement |

 RepeatStatement | LoopStatement | ForStatement |

 WithStatement | EXIT | RETURN [expression]].

A statement may also be empty, in which case it denotes no action. The empty statement is included in order to relax punctuation rules in statement sequences.

Statement Sequences

Statement sequences denote the sequence of actions specified by the component statements which are separated by semicolons.

 StatementSequence = statement {";" statement}.

Assignments
The assignment serves to replace the current value of a variable by a new value indicated by an expression. The assignment operator is written as ": =" and pronounced as "becomes".

 assignment = designator": =" expression.

The designator to the left of the assignment operator denotes a variable. After an assignment is executed, the variable has the value obtained by evaluating the expression.

The old value is lost (overwritten). The type of the variable must be assignment compatible with the type of the expression. Operand types are said to be assigrunent compatible, if either they are compatible or both are INTEGER or CARDINAL or subranges with base types INTEGER or CARDINAL.

A string of length n1 can be assigned to a string variable of length n2 > n1. In this case, the string value is extended with a null character (OC). A string of length 1 is compatible with the type CHAR.

Examples of assignments:

 i := k

 p := i=j

 j := log2(i + j)

 F := log2

 s := {2,3,5,7,1l,13}

 a[i] : = (i + j) * (i-j)

 t1^.key:= i

 w[i+l].ch:= "A"

Procedure Calls
A procedure call serves to activate a procedure. The procedure call may contain a list of actual parameters which are substituted in place of their corresponding formal parameters defined in the procedure declaration. The correspondence is established by the positions of the parameters in the lists of actual and formal parameters respectively. There exist two kinds of parameters: variable and value parameters.

In the case of variable parameters, the actual parameter must be a designator denoting a variable. If it designates a component of a structured variable, the selector is evaluated when the formal/actual parameter substitution takes place, i.e. before the execution of the procedure. If the parameter is a value parameter, the corresponding actual parameter must be an expression. This expression is evaluated prior to the procedure activation, and the resulting value is assigned to the formal parameter which now constitutes a local variable. The types of corresponding actual and formal parameters must be identical in the case of variable parameters, or assignment compatible in the case of value parameters.

 ProcedureCall = designator [ActualParameters].

Examples of procedure calls:

 Read(i);

 Write(j*2 + 1 , 6)

 INC(a[i])

IF Statements
 IfStatement = IF expression THEN StatementSequence

 {ELSIF expression THEN StatementSequence}

 [ELSE StatementSequence] END.

The expressions following the symbols IF and ELSIF are of type BOOLEAN. They are evaluated in the sequence of their occurrence, until one yields the value TRUE. Then its associated statement sequence is executed. If an ELSE clause is present, its associated statement sequence is executed if and only if all Boolean expressions yielded the value FALSE.

Example:

 IF (ch>= "A") & (ch <= "Z") THEN ReadIdentifler

 ELSIF (ch > = "0") & (ch < = "9") THEN ReadNumber

 ELSIF ch = '"' THEN ReadString('"')

 ELSIF ch = "'" THEN ReadString("'")

 ELSE SpecialCharacter

 END

Case Statements
Case statements specify the selection and execution of a statement sequence according to the value of an expression. First the case expression is evaluated, then the statement sequence is executed whose case labelllst contains the obtained value. The type of the case expression must be a basic type (except REAL), an enumeration type, or a subrange type, and all labels must be compatible with that type. Case labels are constants, and no value must occur more than once. If the value of the expression does not occur as a label of any case, the statement sequence following the symbol ELSE is selected.

 CaseStatement = CASE expression OF case {"|" case}

 [ELSE StatementSequence] END.

 case = [CaseLabelList ":" StatementSequence].

Example:

 CASE i OF

 O : p := p OR q; x := x+y |

 1 : p := p OR q; x := x-y |

 2 : p := p AND q; x := x*y

 ELSE

 END

While statements
While statements specify the repeated execution of a statement sequence depending on the value of a Boolean expression. The expression is evaluated before each subsequent execution of the statement sequence. The repetition stops as soon as this evaluation yields the value FALSE.

 WhileStatement = WHILE expression DO StatementSequence END.

Examples:

 WHILE j > 0 DO

 j:= j DIV 2;

 i:= i+1

 END

 WHILE i#j DO

 IF 1 > j THEN i : = i-j

 ELSE j:= j-i

 END

 END

 WHILE (t # NIL) & (t^.key # i) DO

 t : = t^.left

 END

Repeat Statements
Repeat statements specify the repeated execution of a statement sequence depending on the value of a Boolean expression. The expression is evaluated after each execution of the statement sequence, and the repetition stops as soon as it yields the value TRUE. Hence, the statement sequence is executed at least once.

 RepeatStatement = REPEAT StatementSequence UNTIL expression.

Example:

 REPEAT

 k := i MOD j;

 i := j;

 j := k;

 UNTIL j = 0

For Statements
The for statement indicates that a statement sequence is to be repeatedly executed while a progression of values is assigned to a variable. This variable is called the control variable of the for statement. It cannot be a component of a structured variable, it cannot be imported, nor can it be a parameter. Its value should not be changed by the statement sequence.

 ForStatement = FOR ident ": =" expression TO expression

 [BY ConstExpression] DO StatementSequence END.

The for statement

 FOR v:= A TO B BY C DO SS END

expresses repeated execution of the statement sequence SS with v successively assuming the values A, A + C, A + 2C, ... , A + nC, where A + nC is the last term not exceeding B. v is called the control variable, A the starting value, B the limit, and C the increment A and B must be compatible with v; C must be a constant of type INTEGER or CARDINAL. If no increment is specified, it is assumed to be 1.

Examples:

 FOR i : = 1 TO 80 DO j : = j + a[i] END

 FOR i := 80 TO 2 BY -1 DO a[i]:= a[i-1] END

Loop Statements
A loop statement specifies the repeated execution of a statement sequence. It is terminated by the execution of any exit statement within that sequence.

 LoopStatement = LOOP StatementSequence END.

Example:

 LOOP

 IF t1^.key > x THEN

 t2 := t1^.left; p:= TRUE

 ELSE

 t2 := t1^.right; p:= FALSE

 END;

 IF t2 = NIL THEN

 EXIT

 END;

 t1=t2

 END

While, repeat, and for statements can be expressed by loop statements containing a single exit statement. Their use is recommended as they characterize the most frequently occurring situations where termination depends either on a single condition at either the beginning or end of the repeated statement sequence, or on reaching the limit of an arithmetic progression. The loop statement is, however, necessary to express the continuous repetition of cyclic processes, where no termination is specified. It is also useful to express situations exemplified above. Exit statements are contextually, although not syntactically bound to the loop statement which contains them.

With statements
The with statement specifies a record variable and a statement sequence. In these statements the qualification of field identifiers may be omitted, if they are to refer to the variable specified in the with clause. If the designator denotes a component of a structured variable, the selector is evaluated once (before the statement sequence). The with statement opens a new scope.

 WithStatement = WITH designator DO StatementSequence END.

Example:

 WITH t^ DO

 key:= 0; left:= NIL; right:= NIL

 END

Return statements
A return statement consists of the symbol RETURN, possibly followed by an expression. It indicates the termination of a procedure (or a module body), and the expression specifies the value returned as result of a function procedure. Its type must be assignment compatible with the result type specified in the procedure heading.

Function procedures require the presence of a return statement indicating the result value. There may be several, although only one will be executed. In proper procedures, a return statement is implied by the end of the procedure body. An explicit return statement therefore appears as an additional, probably exceptional termination point.

An exit statement consists of the symbol EXIT, and it specifies termination of the enclosing loop statement and continuation with the statement following that loop statement.

Procedure declarations
Procedures are sequences of instructions that perform a specific task. Usually, procedures are used when the same sequence of code is required more than once in a program. In this case, the procedure is written once and is called from several places.

Procedures also improve the clarity of a program. A complicated task is easier to understand if it is composed of a sequence of sub tasks, each implemented by a procedure.

To make procedures more flexible, they can take parameters, which are data objects that can vary from one call to the next. This lets you specify an algorithm with a procedure that is run with different data at different times.

Procedure Declarations

The procedure declaration takes the following form:

PROCEDURE identifier [(Formals) [:ReturnType]]; [FORWARD]
 [Body]

The identifier is the name of the procedure.

Formals are specified by:

[FormalSection {; FormalSection}]

where FormalSection is:

[VAR identifier {,identifier}: [ARRAY OF {ARRAY OF}] FormalType

FormalType is a type name, and may be qualified by a module name.

If ReturnType is specified, the procedure is a function procedure. A function procedure is a procedure that returns a value, and can be used in expressions. ReturnType is the name of the type of value that the procedure returns.

Note that on function procedures, the parentheses of the parameter list are required even if there are no parameters.

Body takes the following form:

{declaration}[BEGIN ListOfStatements [EXCEPT ListOfStatements]] END identifier;

The body of the procedure is a block that is executed when the procedure is called. The normal execution body consists of the ListOfStatements between the BEGIN keyword and the EXCEPT keyword if present or the END keyword if EXCEPT is not present. If the EXCEPT keyword is present then the ListOfStatements between the EXCEPT keyword and the END keyword for the procedure are the exception execution body of the procedure. If the procedure declaration is in a definition module, the body is not included.

The identifier at the end of the body must be the same as the name of the procedure.

Examples:

The following procedure takes no parameters and does not return a value.

PROCEDURE Error;
 BEGIN
 WriteString('ERROR');
 END Error;

The following procedure takes the parameter x and returns a REAL value.

PROCEDURE tan(x : REAL) : REAL;
 BEGIN
 RETURN sin(x) / cos(x);
 END tan;

FORWARD

The FORWARD modifier is not allowed in DEFINITION modules and it signals that the procedure header is a forward declaration of the full procedure declaration which follows later in the source code. This keyword exists in the language to support single pass compilers.

PROCEDURE add(a, b : CARDINAL) : CARDINAL; FORWARD;

... (* other code *)

PROCEDURE add(a, b : CARDINAL) : CARDINAL;

BEGIN

 RETURN a + b;

END add;

The Stony Brook compiler is a two pass compiler and therefore never requires the use of the FORWARD keyword.

Formal Parameters

The parameters of a procedure are variables that are declared in the procedure header. These variables are referred to as the formal parameters. The formal parameters can be referred to in the body of the procedure.

When you call a procedure you must supply a variable or expression for each of the formal parameters. These are called the actual parameters.

See the section Function calls in the Expressions chapter of this book and the section Procedure calls in the Statements chapter of this book for more information on calling procedures and actual parameters.

There are two classes of formal parameters: value parameters and variable parameters. A formal parameter is a value parameter unless the VAR keyword precedes it in the procedure declaration.

Value parameters

Value parameters act as if they are local variables that are assigned an initial value when the procedure is called. The initial value is the value of the actual parameter.

Because the relationship between the actual parameter and the formal parameter is an assignment, the type of the actual parameter must be assignable to the type of the formal parameter.

The actual parameter associated with a value parameter can be either a variable or an expression. If it is a variable, assignments to the formal parameter inside the procedure have no effect on the value of the actual variable.

Variable parameters

The actual parameter associated with a variable parameter must be a variable whose type is identical to that of the formal parameter. The formal parameter refers to the same variable as the actual, so assignments to the formal parameter also change the value of the variable that is passed as an actual parameter.

You use variable parameters when you want the procedure to alter the value of the actual parameter passed to it, for example, to return a new value.

You should also use variable parameters for array and record types, whenever possible because they can be more efficient. When you pass a value parameter, it must be copied, and copying of large arrays and records can be time consuming.

Example:

PROCEDURE Next(a : CHAR; VAR b : CHAR);
 BEGIN
 INC(a);
 b := a;
 END Next;

VAR
 X, Y : CHAR;
BEGIN
 X := 'A';
 Y := 'Z';
 Next(X, Y);
END

After the call to Next, X will have the value 'A' and Y will have the value 'B'. X is unchanged even though the associated formal parameter is changed, since it is a value parameter. Y is changed by the procedure since it is associated with b, a variable parameter.

Open array parameters

You can pass array types as parameters to a procedure by declaring a formal parameter with the type name of an array type. This method, however, is inflexible, since the actual parameter must be exactly the same type as the formal, including the same index type and bounds.

To pass arrays of varying sizes to a procedure, you can declare the formal parameter like this:

ARRAY OF {ARRAY OF} ElementType

Open array parameters can have any number of dimensions, for now just consider an open array parameter with a single dimension. The rules for multi dimension open array parameters logically extend from the single dimension rules.

When the formal parameter is declared this way, you can pass any single dimensional array having the same ElementType, regardless of the index type or range.

Inside the procedure, array formals are indexed by cardinals from 0 to the number of elements in the actual array minus 1, regardless of the type and range of the index of the actual parameter.

You can use the standard procedure HIGH to get the upper bound of the array formal. It returns a CARDINAL value, which is the number of elements in the actual parameter minus one.

Example:

PROCEDURE WriteStr(s : ARRAY OF CHAR);
VAR
 i : CARDINAL;
BEGIN
 FOR i := 0 TO HIGH(s) DO
 Write(s[i]);
 END;
END WriteStr;

You can pass any single dimensional array of characters to this procedure. For example:

VAR
 message : ARRAY [1..10] OF CHAR;

In this case, the formal parameter will be indexed from 0 to 9, even though the actual was indexed from 1 to 10.

Let us now consider two dimensional open array parameters.

If a formal parameter is a two dimensional array of type REAL then you can pass any two dimensional array of type REAL to this parameter. The rules regarding the range of array subscripts are the same as for one dimensional open array parameters.

You can use the standard procedure HIGH to get the upper bound of each dimension of the array formal. It returns a CARDINAL value, which is the number of elements in specified dimension of the actual parameter minus one.

Example:

PROCEDURE MatrixAdd(VAR c : ARRAY OF ARRAY OF REAL;

 a, b : ARRAY OF ARRAY OF REAL);
VAR

 i, j : CARDINAL;
BEGIN
 IF (HIGH© = HIGH(a)) AND (HIGH(c) = HIGH(b)) AND
 (HIGH(c[0]) = HIGH(a[0])) AND (HIGH(c[0]) = HIGH(b[0]))
 THEN
 FOR i := 0 TO HIGH(c) DO
 FOR j := 0 TO HIGH(c[0]) DO
 c[i, j] := a[i, j] + b[i, j];
 END;
 END;
 ELSE
 FatalError('Bozo');
 END;
END MatrixAdd;

The rules we have just discussed for one a two dimensional open array parameters are extended for arrays of any dimension. For more information on the HIGH function see the standard procedure chanter of this document.

Function Procedures

Procedures that return a value are called function procedures. Function procedures can be called inside an expression, and the value returned is substituted for the call.

You declare a function procedure by including the ReturnType in the procedure declaration.

The type returned by a function procedure can be any type.

Inside a function procedure, there must be at least one RETURN statement. The RETURN statement takes the following form:

RETURN expression

The expression must be assignable to the type declared as the return type of the procedure. The RETURN statement terminates the execution of the procedure, returning the value of the expression as the value of the function.

Local Variables

Any declarations included in the body of a procedure are local to the procedure. The names are not defined outside the procedure body.

Variables declared in a procedure body are known as local variables. Space is allocated for these variables only when the procedure is executed.

Each time the procedure is executed, the values of the local variables are undefined. Local variables do not retain their values from one call of the procedure to the next.

Modula-2 procedures can be called recursively. The procedure can be called from its own body, or by other procedures called from its body.

Each recursive call of a procedure allocates a new set of local variables. Changes to a variable in one invocation of the procedure have no effect on the values in other invocations.

Standard procedures
The Modula-2 language includes a set of standard procedures that are built into the compiler and therefore are always available without importing them.

This chapter lists the standard procedures, their uses, allowed parameter types, and the type returned, if any.

ABS

PROCEDURE ABS(X : type) : type;

The absolute value function. X can be any signed integer type, REAL, LONGREAL, COMPLEX or LONGCOMPLEX. The result is the same type as the parameter.

The absolute value of a positive number is itself, and the absolute value of a negative number is the negative of the number.

The absolute value of a complex number is its magnitude. (Remember magnitude is defined as SQRT(real2 + imaginary2))

CAP

PROCEDURE CAP(ch : AnyCharType) : AnyCharType;

Converts ch to uppercase. Characters other than lowercase letters in are left unchanged by this function.

For operating systems that support many languages this function returns correct results for the language the operating system has been setup to use.

CHR

PROCEDURE CHR(val : type) : CHAR;

Converts a numeric value to a value of type CHAR. The value can be any signed or unsigned integer type. The result is the character whose ordinal value is val.

If assignment checking is on, val is checked for a value in the range of type CHAR.

DEC

PROCEDURE DEC(VAR v : type);

PROCEDURE DEC(VAR v : type; amount : CARDINAL);

Decreases the value of variable v by one or by a specified amount. If an amount is not passed a value of one is assumed for amount. The variable can be of any signed or unsigned integer type, any character type, any boolean type or any enumeration type. The amount must be assignable to CARDINAL.

DISPOSE

PROCEDURE DISPOSE(VAR P : PointerType {;tag : tagtype});

Releases the storage allocated to a pointer by the NEW standard procedure or the ALLOCATE procedure.

The optional tag expressions are the tags of variant parts in a record that is being disposed. Each tag expression must be a compile-time constant. The values of the tags must be identical to those given when the object was allocated.

When you dispose of dynamic arrays you do not supply the array HIGH bounds to DISPOSE as you did with NEW. The compiler will fetch these values automatically for you from the dynamic array data.

A call to DISPOSE is translated to a call to DEALLOCATE. In order to use DISPOSE, you must define the procedure DEALLOCATE. Usually, you import DEALLOCATE from the ISO module Storage. You can, however, define the procedure yourself.

EXCL

PROCEDURE EXCL(SetVar : SetType; Element : ElementType);

Excludes an element from a SET or PACKEDSET variable. SetVar must be a variable of a set type and Element must be an expression resulting in a value of the element type of the set. The specified element is removed from the value of the set variable.

FLOAT

PROCEDURE FLOAT(num : AnyIntegerType) : REAL;

Converts the integer number num to REAL. num can be any signed or unsigned integer type.

LENGTH

PROCEDURE LENGTH(str : ARRAY OF AnyCharacterType) : CARDINAL;

Returns the length in characters of the passed string. The string passed to length can be an ANSI or Unicode string.

LFLOAT

PROCEDURE FLOAT(num : AnyIntegerType) : LONGREAL;

Converts the integer number num to LONGREAL. num can be any signed or unsigned integer type.

HALT

PROCEDURE HALT;

PROCEDURE HALT(status : CARDINAL);

Halts the execution of a program. Use the second form to return a status to the operating system. This is useful to inform the program that executed the current program about the success or lack thereof of the execution. If no status is given, 0 is the default value is returned.

HIGH

PROCEDURE HIGH(ArrayVar : ArrayType) : CARDINAL;

Returns the upper bound of an open array parameter variable.

In extended syntax mode you can pass any array variable to the HIGH function.

You can access all dimensions of an array with more than one dimension by passing the appropriate array dimension to HIGH. For example, to get the high bound of the second dimension of an array type with two or more dimensions you would subscript the array variable with one index, thus leaving the second dimension. The value used to index the array is not used since you are not accessing an array element but are informing the compiler which array HIGH dimension to retrieve. Typically you would use the value 0 for the subscript.

Example:

PROCEDURE test(arr : ARRAY OF ARRAY OF REAL);
.
.
.
 FOR i := 0 TO HIGH(arr) DO (* first dimension)
 FOR j := 0 TO HIGH(arr[0]) DO (second dimension *)

INC

PROCEDURE INC(VAR v : type);

PROCEDURE INC(VAR v : type; amount : CARDINAL);

Increases the value of variable v by one or by a specified amount. If an amount is not passed a value of one is assumed for amount. The variable can be of any signed or unsigned integer type, any character type, any boolean type or any enumeration type. The amount must be assignable to CARDINAL.

INCL

PROCEDURE INCL(SetVar : SetType; Element : ElementType);

Includes an element in a SET or PACKEDSET variable. SetVar must be a variable of a set type, and Element must be an expression resulting in a value of the element type of the set. The specified element is added to the value of the set variable.

INT

PROCEDURE INT(Val : ValType) : INTEGER;

Converts Val to INTEGER. Val can be any signed or unsigned integer type, any character type, a boolean type or any enumeration type. For character, boolean and enumeration types, the returned value is the ordinal value of the parameter.

MAX

PROCEDURE MAX(ScalarType) : ScalarType;

Returns the maximum value of a scalar type. The parameter is a type name, which must be a signed or unsigned integer type, a real type, a character type, a boolean type, a subrange, or an enumeration type. The type returned by MAX is the same as the type of the parameter.

MIN

PROCEDURE MIN(ScalarType) : ScalarType;

Returns the minimum value of a scalar type. The parameter is a type name, which must be signed or unsigned integer type, a real type, a character type, a boolean type, a subrange, or an enumeration type. The type returned by MIN is the same as the type of the parameter.

NEW

PROCEDURE NEW(VAR P : PointerType {;tag : tagtype});

PROCEDURE NEW(VAR P : DynamicArrayType; highBounds : CARDINAL
 {; highBounds : CARDINAL});

The optional tag expressions are the tags of variant parts in a record that is being allocated. Each tag expression must be a compile-time constant. The values of the tags determine how much storage is allocated.

For dynamic arrays you must specify a high bound for each array dimension declared in the dynamic array declaration. Remember that you are specifying the high bound for the dimension, and the lower bound is assumed to be zero, and therefore the size of each dimension is the highbound+1.

Example:

PROCEDURE AllocateMatrix(VAR m : Matrix; order : CARDINAL);
BEGIN
 (* order is the number of element in each dimension)
 (therefore the high bound is one less than this)
 (square matrix *)
 NEW(Matrix, order-1, order-1);
END AllocateMatrix;

A call to NEW is translated to a call to ALLOCATE. In order to use NEW, you must define the procedure ALLOCATE. Usually, you import ALLOCATE from the ISO module Storage. You can, however, define the procedure yourself.

ODD

PROCEDURE ODD(Val : ValType) : BOOLEAN;

Returns TRUE if Val is ODD and FALSE otherwise. Val can be any signed or unsigned integer type.

ORD

PROCEDURE ORD(Val : ValType) : CARDINAL;

Converts Val to CARDINAL. Val can be INTEGER, LONGINT, LONGCARD, CHAR, BOOLEAN, or any enumeration type. For CHAR, BOOLEAN and enumeration types, the returned value is the ordinal value of the parameter.

RE

PROCEDURE RE(Val : COMPLEX) : REAL;

PROCEDURE RE(Val : LONGCOMPLEX) : LONGREAL;

Returns the real part of a complex type.

IM

PROCEDURE IM(Val : COMPLEX) : REAL;

PROCEDURE IM(Val : LONGCOMPLEX) : LONGREAL;

Returns the imaginary part of a complex type.

CMPLX

PROCEDURE CMPLX(realPart, imaginaryPart : REAL) : COMPLEX;

PROCEDURE CMPLX(realPart, imaginaryPart : LONGREAL) : LONGCOMPLEX;

Returns a complex type where realPart and imaginaryPart compose the complex type. Note that this is the same syntax used to compose a complex constant. If realPart and imaginaryPart are constants then CMPLX returns a complex constant compatible with a complex types. If realPart or imaginaryPart are not compile time constants then CMPLX can only be used in a statement.

SIZE

PROCEDURE SIZE(item) : IntConst;

Returns the number of bytes of storage occupied by item. item can be either a variable or a type name. Variables can be fully qualified with subscripts or record field references. The type returned by this procedure is compatible with signed and unsigned integer types.

TRUNC

PROCEDURE TRUNC(RealVal : RealType) : CARDINAL;

Converts a REAL or LONGREAL value to CARDINAL by truncation; the fractional part of the real number is discarded. The result is undefined if RealVal is out of the range of CARDINAL.

VAL

PROCEDURE VAL(ConvertToType; Value : AnyPervasiveType) : Type;

Converts a value from one type to another. This function can convert any predefined pervasive type to any other pervasive type. With the following exceptions.

· You cannot convert an enumeration type to a real or complex type. Remember that boolean and character types are defined as enumeration types.

· You cannot convert a real type to a complex type.

· You cannot convert a complex type to a real type.

The following are TRUE:

 INT(...) = VAL(INTEGER, ...);
 ORD(...) = VAL(CARDINAL, ...);
 FLOAT(...) = VAL(REAL, ...);
 LFLOAT(...) = VAL(LONGREAL, ...);
 TRUNC(...) = VAL(CARDINAL, ...);

Modules
Modules are the unit of program decomposition. Modula-2 supports both separately compiled modules and local modules within a compilation unit.

Definition Modules

A definition module is defined by:

DEFINITION MODULE ModuleName;

 {Import}

 {Declaration}

END ModuleName.

Import is:

[FROM ModuleName] IMPORT
 identifier {,identifier};

Each declaration in a definition module is available to other modules that import the definition module.

For compatibility with earlier versions of Modula-2, an export list can follow the imports in a definition module. Stony Brook Modula-2 ignores the export list for definition modules.

Procedures in definition modules

Procedure declarations in definition modules can specify only the procedure header, which consists of the name of the procedure, the parameters, the value type, and the procedure attributes. Any local declarations and the code of the procedure are in the implementation module.

Opaque types

Definition modules can contain type declarations of the following form:

TYPE name;

This is called an opaque type declaration because the actual type is not visible to the user of the module. The type name can be used in other declarations within the definition module.

The corresponding implementation module must contain a full type declaration for any opaque types declared in the definition module. The full type declaration must define a pointer type.

A module importing an opaque type can declare objects of that type, do assignments of objects of that type, compare two objects of the same opaque type, and pass objects of the type as parameters only. The importing module cannot allocate, deallocate or dereference the type since it has no knowledge of the type to which it points.

Opaque types are used to hide information from the user of a module. They let the user perform only the minimum operations on a data type, for two reasons:

· The integrity of the data structure is ensured because operations on the actual data can be performed only by the implementation module itself.

· The user cannot be aware of the actual implementation of the data type. If the implementor decides to change the data structure, users of the data type are not affected.

Implementation Modules

Implementation modules take the following form:

IMPLEMENTATION MODULE ModName [[Protection]];
 {Import}
 {Declaration}
[BEGIN
 ListOfStatements
[EXCEPT
 ListOfStatements]
[
 FINALLY
 ListOfStatements
 EXCEPT
 ListOfStatements
]
]
END ModName.

An implementation module with the same module name must exist for each definition module. The implementation module contains the actual code for the procedures defined in the definition modules. It also allocates the space for variables declared in the definition module.

Each procedure declared as a header in the definition module must be fully declared in the implementation module. The types of parameters, type of return value, public name, and procedure attributes must be identical to the declaration in the definition module, since that is where other modules get the information about the procedure.

Variables, types, and constants declared in the definition module must not be redeclared in the implementation module, with the exception of opaque type declarations. These symbols are all made visible in the implementation module automatically by the compiler.

The implementation module can also contain its own declarations that are not contained in the definition module. These declarations are not visible anywhere else but the implementation module.

Program Modules

A program module contains the main program of a Modula-2 program. Program modules take the following form:

MODULE ModName [[Protection]];
 {Import}
 {Declaration}
BEGIN
 ListOfStatements
[EXCEPT
 ListOfStatements]
END ModName.

The ListOfStatements is the code for the main program. Every Modula-2 program must have a program to define where execution starts. Similarly, you cannot have two program modules linked together in a single program.

Import Declarations

The import declaration is a special declaration that makes symbols from another module available. If you are going to use symbols declared in another module, they must be mentioned in an import declaration.

The import declaration takes either of the following forms:

IMPORT IdList;

or

FROM ModName IMPORT IdList;

Where IdList is:

identifier {,identifier}

In the first form of the import declaration, IdList specifies a list of modules that are imported.

The symbols defined in the definition module of the imported module are not directly visible in the importing module. A qualified reference is required to refer to those symbols.

A qualified reference takes the following form:

ModName.identifier

You can refer to all identifiers from the imported definition module in this way.

The second form of the import declaration imports specific symbols from a module. When this form is used, the symbols named in the IdList are made visible without qualification. Only the symbols named in the IdList are made available by this form of import.

You can use both forms of import to import the same module if you want some of the symbols to be visible without qualification and others only with qualification. You might need to do this to avoid double declarations when two modules you import both define the same name.

You can import from the same module in multiple import declarations but you cannot import the same symbol more than once.

Local Modules

Local ModulesModulesLocalLocal modules are modules that are declared inside other modules. Local modules provide a filter for symbols. You can control which symbols from the environment are visible inside the module, and which symbols declared in the module are visible outside the module.

Local modules take the following form:

MODULE ModName [[Protection]];
{Import}
[Export]
{Declaration}
[BEGIN
 ListOfStatements
[EXCEPT
 ListOfStatements]
[
 FINALLY
 ListOfStatements
 EXCEPT
 ListOfStatements
]
]
END ModName;

Imports in local modules

The import declaration takes the same form in local modules. The symbols imported, however, are not necessarily symbols from other compilation units.

The symbols imported by a local module must be visible in the block containing the module. Only those symbols imported and the standard pervasive identifiers are visible inside the module.

The export declaration

Normally, symbols declared in a module are not visible outside the module. You can use an export declaration in the module to specify those symbols that are made visible in the containing block.

The export declaration takes the following form:

EXPORT [QUALIFIED] identifier {,identifier};

Each identifier must be visible in the module, either because it is defined in the module, or because it was exported from a nested module. These identifiers, and only these identifiers, are made visible in the block containing the local module declaration.

Because the identifiers on the export list are made visible in the containing block, they must not conflict with another identifier declared in that block or exported from another local module to that block.

If you use the QUALIFIED keyword, the identifiers are not made directly visible, they must be qualified by the module name.

Module Initialization

The ListOfStatements following the BEGIN keyword up to but not including the FINALLY keyword if present, in implementation and local modules is initialization code for the module.

The initialization code for all implementation modules is executed before the start of the main program. The order of initialization cannot be guaranteed. However all modules that a module depend on are initialized before its own initialization code is executed.

If a local module is nested in a procedure, its initialization code is executed each time the procedure that contains the module is called.

If the module is local to an implementation module and not to any procedure, the initialization code is executed when the implementation module is initialized.

If the module is local to the program module, its initialization code is performed after all implementation modules and before the start of the program.

Local modules are initialized in the order that they are declared in the source file.

Module Termination

The ListOfStatements following the FINALLY keyword in implementation and local modules is termination code for the module.

The termination code for a module is not active, and will not be executed unless the initialization code completes with an unhandled exception.

The termination code for all implementation modules is executed when the program is terminated either with a call to the HALT procedure or after the last statement in the main program is executed. The order of termination is the exact reverse of the order of initialization.

If a local module is nested in a procedure, its termination code is executed each time the procedure that contains the modules finishes execution and returns to the procedure that called it.

If the module is local to an implementation module and not to any procedure, the termination code is executed when the implementation module termination code is finished executing.

Local modules are terminated in the reverse order that they are declared in the source file.

Exception handling in Module initialization and termination code

Both the initialization and termination sections can have their own unique exception handler. You should think of the BEGIN and FINALLY parts as two separate procedures.

Module Protection

Modules can have an associated protection. The module protection value is a set constant of type PROTECTION in square brackets following the module name. The protection type is defined as

32-bit mode:

PROTECTION = PACKEDSET OF CARDINAL[0..31];

16-bit mode:

PROTECTION = PACKEDSET OF CARDINAL[0..15];

Note: the Stony Brook Modula-2 runtime system does not do anything with the module protection value.

The module protection is defined as an interrupt mask. Thus the code in a module can protect itself from certain interrupts. Two pervasive constants of type PROTECTION are defined. INTERRUPTABLE and UNINTERRUPTABLE. All values of type PROTECTION satisfy the following relationship.

INTERRUPTABLE <= AnyProtectionValue <= UNINTERRUPTABLE

The current protection value can be accessed via the COROUTINES.PROT function (see ISO module COROUTINES).

Compilation units
A text which is accepted by the compiler as a unit is called a compilation unit. There are three kinds of compilation units: main modules, definition modules, and implementation modules. A main module constitutes a main program and consists of a so-called program module. In particular, it has no export list. Imported objects are defined in other (separately compiled) program parts which themselves are subdivided into two units, called definition module and implementation module.

The definition module specifies the names and properties of objects that are relevant to clients, i.e. other modules which import from it. The implementation module contains local objects and statements that need not be known to a client In particular the defInition module contains constant, type, and variable declarations, and specifications of procedure headings. The corresponding implementation module contains the complete procedure declarations, and possibly further declarations of objects not exported. Definition and implementation modules exist in pairs. Both may contain import lists, and all objects declared in the definition module are available in the corresponding implementation module without explicit import.

 DefinitionModule = DEFINITION MODULE ident ";"

 {import} {definition} END ident ".".

 definition = CONST {ConstantDeclaration ";"} |

 TYPE {ident["=" type] ";"} |

 VAR {VariableDeclaration ";"} |

 ProcedureHeading ";".

 ProgramModule = MODULE ident [priority] ";" {import} block ident ".".

 CompilationUnit = DefinitionModule | [IMPLEMENTATION] ProgramModule.

The definition module evidently represents the interface between the implementation module on one side and its clients on the other side. The definition module contains those declarations which are relevant to the client modules, and presumably no other ones. Hence, the definition module acts as the implementation module's (extended) export list, and all its declared objects are exported.

Definition modules imply the use of qualified export. Type definitions may consist of the full specification of the type (in this case its export is said to be transparent), or they may consist of the type identifier only. In this case the full specification must appear in the corresponding implementation module, and its export is said to be opaque. The type is known in the importing client modules by its name only, and all its properties are hidden. Therefore, procedures operating on operands of this type, and in particular operating on its components, must be defined in the same implementation module which hides the type's properties. Opaque export is restricted to pointers. Assignment and test for equality are applicable to all opaque types.

As in local modules, the body of an implementation module acts as an initialization facility for its local objects. Before its execution, the imported modules are initialized in the order in which they are listed. If circular references occur among modules, their order of initialization is not defined.
